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Advancing Atmospheric Composition Analysis and Predictions and Related Services to
Meet the Growing Societal Needs
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Atmospheric Composition Matters:
To Air Quality, Weather, Climate and More
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v Monitoringand prediction of atmospheric

composition play critical roles in supporting
societal needs related to air pollution,
ecosystem and human health, food production
and climate change.
Considerable challenges remain in our ability to
provide reliable and user-driven atmospheric
composition information for many parts of the
world.
Concerted actions focused on advancing
atmospheric composition information systems
are needed to accelerate the implementation of
effective emissions control strategies by
several decades in the areas where itis most
needed, to significantly reduce the current
health and climate change burdens to societies
and address related social inequalities. L
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OverarchingScince Objective —Continue to improve analysis and prediction
capabilities of Earth System Models to improve related services to meet the

growingsocietal needs / ,
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ATMOSPHERIC MODELS

Air Quality Prediction is a Key Component of Air Quality Management | torzonaicre -
(mid/long term and short term applications through AQ Forecasts)
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Lessons from Numerical Weather Prediction
have improved significantly over time

Improvements have come by advancingthe
observations, the models and the assimilation
systems.

The rise of ensemble forecasting (usingmany
realizations) has transformed predictability into an
envelope of possibilities (or probabilities) rather than a
deterministic quantity or single prediction. This
matches societal needs for clearly defining prediction
uncertainty.

Many of the detailed processes that control the
evolution of weather and climate are not constrained
with observations, leadingto persistent errors in our
predictions.

A better paradigm for bringing together observations
and models into an integrated whole would target
sources of model error, which would advance model
representation of weather processes, and significantly
advance our predictive capabilitie.

Accuracy of weather forecasts
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Good news! Major advances in observing
systems

Good News: The global observing systems
for atmospheric composition are growing
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The dawn of a new era for atmospheric composition monitoring from space

The next few years will see an unprecedented amount of satellite instruments capable of
monitoring a wide range of trace gases, key greenhouse gases and aerosols.
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What can we leam from multi-model studies?

MICS-III

Model Intercomparison
Study Phase lll

Maosaic national
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Good News! Current Air Quality Models have

Appreaa ble Pred|1§;c|5)no§J<|II "
{(b3) P | _{Ragion_All
5 oot S B—

PM2.5 0- uii'a?'-'&_ix_l :ius_-am | NMB: “2.2% Inus 13?%

1 ¥ L 0
R N
Models

—

e Model Intercomparison Study Asia

(Itahashietal., ACP, 2020)
B

KORLUS-AQ

Haight [kem]
%] ™ @ o
T T

>

[ ——— .“ Y
x"flil\ 1&& ”mu "

b

lowa/UCLA

Hour [LITC]



Major sources of uncertainty in AC models

remain

* Emissions (anthropogenic and natural
(e.g., biomass burning, wind blown
dust)

e Meteorology

e Clouds (photolysis rates, aqueous
chemistry, redistribution)

e Precipitation (removal by
scavenging)

e Planetary boundary layer height,
local circulations

* Process understanding (chemistry, dry
deposition, etc.)
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Distant Sources of Air Pollution are Becoming More
Important in Air Quallty Management
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Improving understandingand capabilities through field
experiments
Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ)

Purpose: Improve understanding of the factors
controlling local air quality across Asia through
multi-perspective observations and modeling
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Approach: Conduct airborne sampling across
multiple locations in collaboration with local
scientists, air quality agencies, and other
relevant government partners.

Philosophy: Openly share data during all phases,
conduct joint analysis with local scientists and
air quality agencies, and report findings to local
governments
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Health Impacts of Air Pollution

Growing capabilities to produce surface concentrations of PM, . and other pollutants at
high spatiotemporal resolution (1km, daily or finer) usingestablished supervised machine

learningtechniques and data from new generation of geos patial pollution satellite sensors

and low-cost sensors. Age-s pecific

We use the following equation to estimate the excess premature deaths AMort attributable to long-term PM, 4/O; exposure.

1
AMort = y, x Pop X [1 —ﬁl
Yo: cause- and age-specific baseline mortality rate across countries/regions;
Pop: age-specific population under exposure for a specific country/region/grid;

GEMS (hourly) RR: relative risk captures the increase in mortality that can be attributed to a given increase in
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Models also play important roles inanalysis
Mortality Benefits through Policy Intervention

Anthropogenic emissions: ECLIPSE V6 Baseline scenario (CLE)
1.1t's produced by using GAINS model

2.Gridded emissions (netcdf4 format 0.5°*0.5°) of
SO,, NOx, NH;, NMVOC, BC, OC, OM, PM, ., PM,,, CO, CH,
Existingor announced air pollution reduction policies in official

plans
(1990, 1995, 2000, 2005, 2010, 2015, 2020, 2025, 2030, 2040, 2050)

Maximum air pollution mitigation (which means take the most
ambitious control strategies) (2025 2030 2040 2050

AP+ Climate mitigation ( take decarbonization strategies to achieve
the Paris climate accord and keep global temperature increase well
below 2°C) (2040KX

APC + nitrogen measures ( modifications of current agricultural
practices to minimize alterations of the global nitrogen, which will
reduce the NH3 and greenhouse gas emissions to the atmosphere)
(2040)

AHENER APCN +“healthy diet” ( dietary changes to optimize human health
and environment sustainability which aims to reduce emissions
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Air Pollution & Mortality - reducingimpacts by
controllingemissions — pathways towards carbon
neutrality
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Air Pollution & Mortality - reducingimpacts by controllingemissions

Chenetal., in prep,
2024
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Despite the ongoingreduction in PM2.5 exposure in India & China, air pollution control
strategies may not offset the negative effects of agingissues on mortality.
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PM, 5 Mortality (million deaths yr~1)
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Air pollution is a critical challenge in Southeast Asia
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Distribution of PM2.5 and Related Mortality in 2020
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Mortality assessment (Short-term exposure) during Asia-AQ
(FEB + MAR 2024)

Short-term mortality realted to PM2.5

__ during ASIA-AQ 0.05 Estimated of mortality during the ASIA-AQ campaign
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2024 2027

Implementation Pre-Oper Phase

G3W - IPP
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Increase in the Co-occurrence of Heat and Air Pollution
Extremes

The multifold increase in the land area subjected
to prolonged HHH (from 2% to 25%)

DAILY MAGAZINE

the news gateway

US World « Politics Business + Science Tech . Sports + Health ~ Enterts

Tor

Days with both extreme heat and
extreme air pollution are becoming
more common - which can't be a
good thing for global health

PM2.5 AND Ozone remain problems

(a)

The increasing rate of joint exceedance is larger than the rate
of Tw and Oj itself. For example, Tw and O3 co-extremes
increased by 7.0% in BTH, higher than the percentage
increase of each at 0.9% and 5.5%, respectively.

28
Xiao et al., BAMS, 2022: Xu et al., AGU Advances, 2020



Critical role of super-pollutants in the next 2 decades

Emitted Resulting atmospheric Radiative forcing by emissions and drivers LEVELOF
compound drivers confidence
| ' | I
8 co, CO, ' I ; 1.68[1.33102.03] | VH
o | |
2 , | I '
3 CH, Cco, H,0 | | : : | 0.97 [0.74 to 1.20] H
g; Halo- ! | _|r : | |
3 carbons CFCs HCFCs | | | [ | | 0.18[0.01100.35]| H
E | | | | [
2 NO N,O : : | : | : 0.17[0.13100.21]| VH
I |
© | I | [ | [
2 CO CO, CH, | | | | : | 0.23 [0.16 to 0.30] M
é.’f g | I I | | !
£ E NMVOC | CO, CH | I | I | | 0.10[0.05t00.15]| M
<< |
% | | | | | I
g§ NO, | . [ ! | ! 015[-03410003]| M
S | | — | [ | |
% Aerosols and | 111 o0 I I—Iﬁ ! | :
E precursors | organic carbon Black carbon I P : | | -0.27[-0.77 to 0.23] H
o ( | [ | |
. ' H . |
OnganttEmon Cloud adjustments | d I [ | 055[13310-006]| L
and Black carbon) |  due fo aerosols | . | | | |
| | | | | ]
Albedo change
| 0.15[-0.25t0-0.05] [ M
due to land use ' ' e [ ! | | e
— I Ll | T |
= :
g Changes in | | ol | I | ' 0.05[0.0010 0.10]| M
=z solar irradiance | | | | | | |
2.29[1.13t0 3.33]
. 2011 H
Total anthropogenic |
; 1980 | 1.25[064t01.86]| H
RF relative to 1750 |
1950 | 0.57 [0.29 to 0.85] M
| | |

0 1 2 3
Radiative forcing relative to 1750 (W m2)

Need more locations
where comprehensive
suites of
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made together,
Including GHGs,
Isotopes, BC, ozone,
and others to support
Increased efforts to
mitigate climate
change and air
pollution worldwide.



Air Quality Management — Bangladesh

Integrated Analysis
to help identify
cost-effective
control strategies
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Socio-economic and emission trends 2020-2030, Greater Dhaka area
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Source apportionment for PM,.s exposure in GDA,
Baseline 2030
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Marginal cost curve for unilateral GDA measures 2030
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Marginal cost curve for cooperative AQM approaches 2030
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Need toincrease efforts toincrease resiliency to air pollution and climate
change and develop better adaptations while we urgently act to reduce

emissions of pollutants and greenhouse gas emissions

: Dlgltal twin platform to suppnrt air pollutlon and health studies
-- built upnn an earth-system model framework ‘to produce tailored analysis for use in tlme series
EERREE ant:l case c-:nntrc:-l studies requiring spatlal and tempcra[ exposure -data. R
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Bendingthe curves!

v Monitoring and prediction of atmospheric

Lea rnmg from others! composition play critical roles in supporting
Working together! societal needs related to air pollution,
x - ecosystem and human health, food production

12+

and climate change.
v Considerable challenges remain in our ability
to provide reliable and user-driven atmospheric
composition information for many parts of the
S e S Lt carbors sivk (99 GI) world.
v Concerted actions focused on advancing
- atmospheric composition information systems
gt o o =1 are needed to significantly reduce the current
S —— Mm health and climate change burdens to societies
"’ COClLTTT = and address related social inequalities.
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